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Abstract—Plasticity in steel is characterized by an appreciable amount of plastic flow (in the yield
plateau range} which precedes strain hardening. The plastic behavior of matenals is most pro-
nounced in the material with plastic flow such as mild steel. The author has previously (1993 and
1994) proposed a new idea of the role of plastic flow in the plastic plate buckling under uniaxial
compression {Inoue. T. and Kato, B. (1993). Analysis of plastic buckling of steel plates. Int. J.
Solids Structures 30, 835-856; Inoue. T. (1994). Analysis of plastic buckling of rectangular steel
plates supported along their four edges. Int. J. Solids Structures 31, 219-230]. The original idea was
to find a new torsional mode of plates which had not been noticed by anyone at the instant of
buckling. The new mode was based on the concept that plastic strain was created by slips based on
the Tresca yield criterion. and gave a significant reduction of the shear modulus. Its analytical
solutions for the plastic buckling were compared with test results. and a good agreement in the early
plastic zone was obtained. This paper aims to solve analytically the plastic buckling stress of mild
steel plates in shear based on the similar concept adopted in the previous papers. Copyright «= 1996
Elsevier Science Lid.

I. INTRODUCTION

Analysis of plastic buckling of plates has a long historical background. Representative
investigations for plates in shear were published by Gerard (1948), Stowell (1949) and
Bijlaard (1949). In these investigations, Gerard suggested the secant modulus method, and
Stowell and Bijlaard employed deformation theory for the analysis of plastic buckling of
plates. The very close solutions were derived by the above two procedures. The deformation
theory gives lower solutions than test results of mild steel plates under uniaxial compression.
It is not rational for the problem of plate buckling because stress bifurcates from pro-
portional loading. On the other hand, it is well known that incremental theory, which seems
to be rational. gives higher solutions for plastic buckling stress than test results. The
discrepancy between theoretical value and test results was diminished by recent inves-
tigations (Sewell, 1973 and 1974, Inoue and Kato. 1993 and Inoue, 1994) in the case of
uniaxial compression. Shear buckling is not, however, treated there. Historical reviews of
investigations for plastic plate buckling were summarized by the author (Inoue and Kato,
1993).

The author has already developed a creative study of plastic buckling of steel plates
under uniaxial compression. In its analysis vielding of steel plate was to follow the Tresca
yield criterion. Plastic deformation of the plate was to be caused by slips which developed
only in the directions of maximum shear stress. The author has found there a new buckling
mode and significantly reduced shear modulus which had not been noticed previously.
Theoretically obtained buckling strength has been in good agreement with test results.
especially in the early plastic zone.

In this paper, buckling stress of simply supported rectangular steel plates in shear is
theoretically obtained. [t is assumed. similarly 1o the previous investigation (Inoue and
Kato, 1993). that vielding follows the Tresca yield criterion and plastic deformation is to
be caused by slips which develop only in the direction of maximum shear stress. Evaluation
of bending and torsional stiffnesses becomes a problem in the analysis of plastic plate
buckling. These are derived under the condition that any strain reversal is not created at
the instant of plastic buckling. This concept was established as tangent modulus theory by
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Shanley (1947), and was applied to the plastic buckling analysis of plate based on defor-
mation theory by Stowell (1948 and 1949). In this paper, obtained bending stiffnesses have
the same values even in the plastic flow and strain hardening ranges as those in the elastic
range, and torsional stiffness vanishes in the plastic flow range and is expressed by the use
of tangent modulus on the shear stress—strain curve in the strain hardening range.

The difference between the author’s analysis and that of incremental theory is described
in the Appendix.

2. BENDING AND TORSIONAL STIFFNESSES IN THE PLASTIC RANGE

2.1. Relation between the stress and strain increments

Yielding is assumed to follow the Tresca yield criterion and the plastic deformation is
generated by planar shipping in the direction of maximum shear stress. This assumption
tacitly includes the fact that the enlarged yield locus keeps similarity to the initial shape of
yield locus. The plastic strain increment of yielded steel plates in shear contains only shear
strain components even if any strain reversal is not created. Therefore, the increment of
normal strain is perfectly elastic in both plastic flow and strain hardening ranges. The shear
modulus is zero in the plastic flow range because the increment of shear strain takes place
indefinitely without any stress increase in shear. In the strain hardening range, the shear
modulus is uniquely expressed by the use of the hardening modulus £, of the coupon test
if E, is constant throughout the plastic range. It is suitable to relate the increment of
maximum shear stress dr,,,, with the increment of maximum plastic shear strain dy,,,,, under
the Tresca yield criterion. So, to find the relation above, the property revealed by uniaxial
tension is applicable. When the direction of uniaxial tension coincides with the x-axis, there
is the following relation among each increment of principal plastic strain,

de? = —-2del = —2de” N

where
de, = increment of plastic principal strain in the v direction
de? = increment of plastic principal strain in the y direction
de? = increment of plastic principal strain in the - direction.
The increment of maximum plastic shear strain which corresponds to eqn (1) is given

by
3 3 do
d”{r’ul\ - 7d8[\) =5 dE‘ - 2
coe 2 2 E @
where
E =2.059 x 10°N mm * = Young's modulus
dy# ., = increment of maximum plastic shear strain
de¢, = increment of normal strain in the x direction under uniaxial tension, and equal
to dé? in the plastic flow range
do, = increment of normal stress in the x direction under uniaxial tension, which
vanishes in the plastic flow range.
The increment of maximum shear stress is given by
drl?l(l\' = %do-\ (3)
where

dt,... = increment of maximum shear stress which vanishes in the plastic flow range
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There is the following relation in uniaxial tension
do, = E, de, 4)

where
E, = tangent modulus.
In the strain hardening range eqns (2)—(4) give

] 1
“P — _—
dI max 3 <E, E) d‘[mu\ . (5)

In the plastic flow range, there is the following relation
dyfu, =dr (6)

where
dx = positive indefinite scalar
In the strain hardening range. adding the elastic component to eqn (5), the following

equation is obtained
die = | - +3( L 2 )k 7)
imax T G El - E Tinnax (
where

dy,... = increment of maximum shear strain

G = E/2(1 +v) = elastic modulus in shear

v = 0.3 = Poisson’s ratio of steel.

Figure 1 shows a plate in shear with working stress expressed by arrows. Directions of
x-and y-axes are defined anew as Fig. 1. The directions of maximum shear stress and strain
coincides with x- and y-axes. Therefore eqns (6) and (7) can be applied to those directions.

Bringing the above consideration to a conclusion.

(a) Plastic flow range

1
de, = E(da‘ —vds,)

1
de, = E(da\ —vde,) ®)

dy. =dx

}'\\
where
de,, de, = increment of normal strain in the x and 1 axis respectively
do . dg, = increment of normal stress in the x and 1 axis respectively
dy,, = increment of shear strain in the xy component.

a
e X
] L
bl t |
} |
yi

Fig. 1. Direction of axes and working shear stress.
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(b) Strain hardening range

1 h
de, = E(da\ —vda,)
dS\ = 71” (do-l -V dg.\) & (9)

| | |
o= =3 — — )
d{ XL |:G + <E, E)Jdr\l

where dt,, = increment of shear stress in the xy component.

2.2, Bending and torsional stiffness in the plastic flow range
The bending and torsional moments of orthogonally anisotropic plate are generally
expressed by the following equation.

M =DIp . +D. 1o,
M, =D, 1. +D, I (10)
M, =2G,id,,

where

I=7r12

t = thickness of a plate

DI, DI D.I D.JI= bending stiffnesses

G,/ = torsional stiffness

G, = shear modulus

¢, = —¢ w/Cx® = curvature in the x direction

¢, = — {7 w/Cy" = curvature in the v direction

¢., = ¢ w/ex ¢y = twist of the surface with respect to the x- and y-axes

w = out-of-plane displacement of the plate.

Directions of bending and torsional moments which work on a plate element are
defined by Fig. 2.

(a) Bending stiffnesses in the plastic flow range

Because increments of normal strain de, and de, of yielded plates in shear created by
buckling are perfectly elastic by eqn (8). all the bending stiffnesses take elastic values.
Therefore these values are given as follows:

E
DI=DI= —
| —v-
(1)
vE
D I=D 1=— -]
1—v
Myx

Fig. 2. Direction of moment.
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- .

a) 0< Pxy b) dxy <0

Fig. 3. Distribution of shear strain.

(b) Torsional stiffness in the plastic flow range

The distribution of the increment of shear strain accompanied by torsional deformation
at the instant of buckling is assumed to be linear to the direction of plate thickness. This
assumption is true in the elastic buckling. and the distribution is given by

d}‘\l = -2z \ (12)

where - = axis along the plate thickness with an origin at the center of plate thickness.

The increments of shear strain given by eqn (12) are expressed by dashed lines in Fig.
3(a). (b) for positive ¢,, and negative ¢,,. respectively. The condition that any strain
reversal is not be created at the instant of plastic buckling is satisfied by the progression of
the average shear strain at the center of plate thickness. Then we obtain

d‘;‘\l :/fA‘z:d)n (13)

where f§ = average increment of shear strain which progresses at the center of plate
thickness.

When the direction of working shear stress coincides with positive direction of dy,,, f8
1s positive. Then, the distributions of the increment of shear strain given by eqn (13) are
illustrated by solid lines in Fig. 3. This figure shows the two limit states in which the
condition of no strain reversal is just satisfied by the condition that the increment of shear
strain of right or reverse side of the plate remains zero. When the working shear stress takes
opposite direction of d-,,. it is suitable to consider f is negative.

The progression of dy,, in eqn (8) is brought about without any increase of shear
stress. Therefore. the shear modulus in this range is given by

G, =0 (14)

Thus torstonal stiffness in eqn (10) 1s also zero.

(c) Bending stiffness in the strain hardening range

All the bending stiffnesses take the elastic values and are given by eqn (11), similarly
to those in plastic flow range because eqn (9) means de, and de, are elastic.

(d) Torsional stiffness in the strain hardening range

The distributions of the increment of shear strain accompanied by torsional defor-
mation at the instant of buckling are considered to be similar to those of plastic flow range.
Therefore these are again illustrated by solid lines in Fig. 3. In this case, the relation between
the increments of shear stress and strain is expressed by eqn (9). As a result, 1 obtain the
following shear modulus:

G, = o (15)

71+211
G \E F

Thus torsional stiffness is obtained by multiplying / by G,.
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3. BUCKLING OF RECTANGULAR STEEL PLATES IN SHEAR

The boundary condition around the plates treated in this paper is simply supported.

3.1. Elastic buckling of rectangular steel plates in shear

Stein and Neff (1947) has solved this problem by calculating a 10 order determinant.
There is a precise solution by Seydel (1933) for a plate whose aspect ratio a(=a/b, b and
a: breadth and length of a plate, respectively) is equal to 1. And there is another precise
solution by Southwell and Scan (1924) for a long plate (x = o0). Southwell and Scan had
obtained the buckling stress by analyzing the free oscillation of the plate. Namely, they had
found out the buckling stress at which its frequency vanishes. Based on the above results,
Bleich (1952) derived an approximate parabola as follows taking 1/« as a parameter for
the range 0 < l/a < 1.

[2
. -1 K 16
o T 1’(1—» )(b> ‘ (1o

] 2
Ke =534+4 1) (17)

(apply fora = 1)

where 7, = buckling shear stress
For # < 1 there is the following conversion

. __io: & (ﬁ) _,F_E_G) & (é) (18)
T 2(1—vy\a, b) 1201 =vH\b a

where K’ = value of K, obtained by substituting 1/« instead of x in eqn (17).

Therefore we obtain
b 2 1 2
K. =K|[-] =40+534(- (19)
a o

(apply fora < 1),

3.2. Plastic buckling of rectangular steel plates in shear

In this section, yielded steel plates are considered to be orthogonally anisotropic plates.
Their buckling stresses are estimated approximately by energy method. Sectional stiffnesses
derived in Section 2 are utilized in the analysis.

(a) When « has a finite value.

Buckling mode can be expressed by the following Fourier series when all edges are
simply supported.

mm nm

= i 2 o sm) xsin 5 ) 20)
m=1n=

x- and y-axes are defined in Fig. 1.

The buckling stress is obtained by the following procedure. Firstly, set the strain energy
created by buckling equal to the work of external forces. Secondly obtain the buckling
stress by the condition to minimize it. This procedure is similar to the elastic buckling
analysis by Timoshenko and Gere (1961).
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The strain energy ¥ of orthogonally anisotropic plates is expressed by the following
equation.

| o wy’ AT w\? w w Fw )
v=1r\||p. 4D Dy + D)2 4G, dxdy  (21)
§ éx” "\ a7 ' BRGNS 0x Oy

Integrating the eqn (21), we obtain

ab X X mt\’ nint\ m>nn minnt
V=gl ¥ Y fon| D= ] +D: (=] (D +Dy) +4G,
pE

m=1ln=1 - azbz azb2
(22)
The work T of external forces is expressed by
cw Cw
T=—-_N. j [ ——dxdy (23)
Jox &y
where N, = 1,/ = shear buckling strength per unit width.
Integrating eqn (23) we obtain
. ) mnpq
r=— 4('r N Xy Z Z Z Z ,fmmfpy T, - (24)

m n op g (m_ “‘p_)(qzw‘nz)

where m, n, p and g = integers which made m+ p and n+ ¢ odd numbers.
By eqns (22) and (24), ., N,, is obtained as the following.

P PY R rn: 7[1 2 n?_ 7[: 2 mz nl n.4 rn;’. n2 7I4

Z Z./r_}m D\' N +D\ N +(D\'\'+D\.\) PR +4Gp N
ablm=1n=1 a ' b ’ a b azb‘

erd¥yy = — _35-

SYSS fo frg P

mon op g (m _pl)(q2 —nz)

(25)

Differentiating eqn (25) by each coefficient f,,, and setting this equal to zero in order
to minimize the absolute value of ,N,,, homogeneous linear equations for f,, are obtained.
These equations are divided into two groups. One is that for symmetrical mode
(m+n = even number). and the other is that for antisymmetrical mode (m+#n=odd num-
ber) about the center of the plate. ,N,, is obtained by the process of making zero the
determinant of the coefficient matrix of each group of equation. And two solutions with +
signs are obtained. The smaller absolute value of N, between symmetrical and anti-
symmetrical mode is the significant solution to be obtained. ., N,, is calculated by means of
iteration to increase the assumed stress step by step starting from low value in order to find
out the stress at which the sign of the determinant changes.

The degrees of m and » are selected to five respectively, and the combination of (m, n)
1s 25. In these, combination for symmetrical mode is 13 and that for antisymmetrical mode
is 12.

Elastic analysis by these degrees gives almost the same solution as Seydel’s (1933)
precise one for x = 1.

The bending stiffnesses are elastic and are given by eqn (11) in the both plastic flow
and strain hardening ranges. The shear modulus are given by eqns (14), (15) in the plastic
flow and strain hardening ranges, respectively. The differences of the solution between the
following two cases is only small. One is the analysis by the use of sectional stiffnesses in
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y

Fig. 4. x y axes of plate for x = .

the plastic flow range. and the other is the analysis by the use of those in the strain hardening
range. The difference is largest for x = 1, and is at most 1.4%. Therefore the plastic buckling
of the steel plates in shear has been analyzed using moduli expressed by the eqns (11) and
(14).

(b) When z = «.

When x = o, Southwell and Skan (1924), as mentioned before, had obtained precise
buckling stress together with the mode (buckling wave) in the elastic analysis. They had
made clear that the mode had resulted in harmonic function toward the longitudinal
direction. Therefore. the same mode is assumed for the plastic analysis in this case. Thus,
I obtain

N

w = dcos (7;.\'—1//) (26)

where

d = function of y which determines the magnitude of buckling wave

/. = half wave length in the longitudinal direction

¥ = function of y.

Figure 4 shows the direction of x- and v-axes with an origin at the center of one half
wave in the longitudinal direction of the plate. It is unnecessary to analyze an anti-
symmetrical mode because it appears as a part of sequential symmetrical mode and its
buckling strength is equivalent to that of a symmetrical mode.

Equation (26) is transformed to

n N
w=dcos ~xCcosy+dsin - .xsiny 27
/ /.
Replace the moduli in the above equation as follows

(28)

dsiny = h, (1)
dcosy = h, (y)

h, and h, must satisfy the following boundary conditions in the simply supported case.
aty = +5/2

hy =0
Chi)
(‘\.).2

(i=1or2)

0 29)

Because the buckling mode is symmetrical, each function must be expressed by the
following Fourier series to satisfy the above boundary conditions.
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d 2
hi(v) = 3 f,sin ~~nﬂy

m=1 b
(30)
2n—1)n
hy (3) = Zg,,cos( n—l)n v
n=1 b
Therefore
~ 2
w= 3y ,,,sm-%xsmg\
=1 (3])

(2n—1)=n T
+ Z Gn COS*" R -1COS T X
n=1 b /.

The buckling strength is obtained applying eqn (31) into eqn (21) and eqn (23) which
express the strain energy and the work of external forces respectively. The ranges to integrate
are

N
N
b N

[\
[\
[ NSRS

We obtain the following strain energy V'

V=_IA4, (32)

. > (.f’i,wi)
n=1

; L *£
+D.."4b<:> D) [(2m) fi4+@n—1 g:l

no=1n

/b S 2 2
+ D\\ +D\\ T 2 It 2n—1)° "
( 4 (b/) mz:;l nZl [( m) f ( " ) g :|

)bn

+4G > S| e+ n— 1) 33
r 4 (b/) WZIHEI |:( rn) f ( " ) g jI ( )

The work T of external forces is expressed by

T=,N,nB, (34)
x X 4m(2n—1) i
= (_ 1 fm=m mYn (35)
'”Z::l IIZI ) (2m)2 —(2)’1—1)2 ] g

Equating eqn (32) to eqn (34) the following ,N,, is obtained

!

Ny=—-4
X} 27[31 1

(36)

or

Differentiating the above eqn (36) by each modulus and set equal to zero in order to
satisfy the condition to minimize ., /V,,, the homogeneous linear equations for f,, and g, are
obtained. Therefore the buckling strength N, is determined as the absolute value which
makes the determinant of coefficient matrix of these equations zero.
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Fig. 5. Stress strain relation.

Each degree of m and # is selected to be 6. Accuracy of the analysis by these degrees
has been confirmed in the elastic case for long plate. The discrepancy between this solution
and exact value by Southwell and Scan (1924) has been at most 0.9%.

3.3. Analvtical results in the plastic range

In the analysis of plastic buckling stress of steel plates in shear. the constant bending
stiffnesses (eqn (11)) and shear modulus (eqn (14)) obtained before in the plastic flow
range are applied to the whole plastic range. The buckling stress is described in the style of
eqn (16). Here K, in eqn (16) is exchanged by K|, in the plastic range. Therefore

n E 1y
o= ) K 37)
12(1-#)(”) ’ (

The value of coefficient K|, is analytically obtained taking x as a parameter. Buckling
strain is obtained as the point on the shear stress—strain curve. This curve is shown as the
following.

The material is mild steel SS400 in Japan Industrial Standard. The ideally assumed
typical shear stress—strain curve is drawn in Fig, 5 in correspondence with uniaxial tension
curve. This curve consists of elastic, plastic flow and strain hardening ranges having the
following maximum plateau. The characteristic values, which define this curve, are assumed
as Table 1. In this table, the following symbols are used:

o, = vield stress in uniaxial tension

0,, = maximum stress in uniaxial tension

¢, = yield strain in uniaxial tension

g,, = strain at the onset of strain hardening in uniaxial tension (=11¢,)

&, = strain at maximum stress in uniaxial tension

E, = tangent modulus in the strain hardening range in uniaxial tension (=1/33E)

7, = yield shear stress

7,, = maximum shear stress

'y = yleld shear strain

', = shear strain at the onset of strain hardening

', = shear strain at maximum shear stress

Table 1. Material property

g, T ey £, £y E E,

(N mm-) (N mm-) (%) (%) (%) (N mm?) (N/mm?)
235 353 0.11 1.26 313 2.06 x 10° 6.237 x 10°
Ty Tom PR Ve Ve G G.xr

(N mm?) (N mm-) (%) (%) (%) (N.mm"~) (N/mm?)

118 177 0.15 1.86 4.68 7.9x10* 2.089 x 10°
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Table 2. Value of K,

% 0.5 1.0 1.2 1.4 1.5 1.6
7n7107d7e7 A S S S 7877A7¥ 757
K, 18.6 6.22 541 )]1” 5.05 5.02 -
7;7 718 720 2.57 3.0 4.0 x
7nT0ée o Z A N A a S S S&A
71;:7777 :.93 4.66 7 4.;1() 7 4.33 4.23 3.96

G,, = tangent modulus in the strain hardening range in shear.
7, is expressed by the following equation using o, based on Tresca yield criterion.

Ty = %U) (38)

7,, is obtained by the following equation. which assuming the similar relation as that
in yield stresses, holds good for maximum stresses.

Ty = IO_ (39)

A2l

The length of vield plateau 7y, is estimated by dy%,.. in eqn (2). In the right side of eqn
(2), the length of yield plateau ¢, in uniaxial tension is substituted for de?. Therefore

o = gz;(, (40)
where
Yo = Va Ty
& =&, — &y
Therefore
T =Tt (4D
In Table 1,

- 1s calculated by eqns (40) and (41) equating &, to 10¢y.
G, is given by G, in eqn (15) substituting £, for £, on the right side of this equation.

3.3.1. Buckling stress. The values of K, in eqn (37) are shown in Table 2 and Fig. 6
taking x as a parameter. These values in Table 2 give the smaller ., N,, between symmetrical
and antisymmetrical modes. When « = oc, the value of 4 which gives the smallest value of
N, 1s 1.095. In the mode column of this table, S means a symmetrical mode and A means
an antisymmetrical one. Figure 6 illustrates the coefficient K, taking 1/x as abscissa for
0 < 1/x < 1. In this figure, a one-dotted chain line is drawn by approximately eqn (17) for
K. and a solid line is the value of K, whose two modes are distinguished by symbols S and
A, respectively. The value of K, shows a tendency to increase when 1/x decreases near zero
neighborhood. This results from the approximate analysis which regards the plate length
as definite and applies definite number of Fourier series to their buckling modes. But as 1/«
approaches zero, the value of K, must get closer and closer to that for « = o (point M in
Fig. 6).

A broken line is the approximate equation as follows. Namely, this curve is obtained
by assuming a parabola which passes two points M and N corresponding to x = o¢ and 1
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Kp (Ke)
10 \ — I

i L
30 02 04 06 08 1.0
1/a =b/a
Fig. 6. Value of K(K,)
respectively. Thus we obtain
] 2
K, =396+224 <x) (42)

(apply foro = 1),

This parabola is somewhat smaller than the value analytically obtained, but is higher
about 3% near 1% = 0.85.

For the range % < 1, there is the same conversion for K, as the elastic case (eqn (18)
and (19)). Therefore we obtain

]\2
K, =2.24+3.96 (x) (43)

(apply forz < 1).

The buckling curve is generally represented as Fig. 7. The ordinate is the buckling
stress 7., and the abscissa is width-to-thickness ratio /1. A ~ B is an elastic buckling curve
and C ~ D is a plastic buckling curve over yield stress. B ~ C is the range in which the
buckling is caused at the yield stress. The upper limit of this curve is determined by the

Ter

b/t

(/05 (b/1), (b/1),
Fig. 7. Buckling curve.
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maximum shear stress t,, in the material property. Fig. 5. (b/1),, (b/t), and (b/1), correspond
to the points B, C and D in Fig. 7, respectively. Based on the material property, Fig. 5, the

plates with /¢ smaller than (b/1), reach 1,, without following buckling.

The values of (b/1),, (b/1), and (b/1); are calculated by the following equations with a
parameter o by the use of K, (eqn (17) and (19)) and K, (eqn (42) and (43)). Their values

are shown in Fig. 8 forx > 1.

When o > 1
b
[1

When % < 1

TN
~ |
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(44)

(45)
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(47)

(48)

(49)
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Table 3. Value of (h;1), (i = 1,2 0r 3)

X (hin), (h.1) (hif)
0.5 200.3 169.1 138.1
1.0 121.5 99.0 80.9
1.5 106.1 88.5 72.3
2.0 100.1 84.6 69.0
% 91.9 79.1 64.6

These values for the specific values of z(=0.5. 1.0. 1.5, 2.0 and oc) are listed in
Table 3.

Figure 9 is a buckling curve for « = . In this figure (A4) is an elastic buckling curve
and (B) is a plastic buckling curve obtained by the present paper. The values of (b/f),,
(bit)> and (b-1), defined in Fig. 7 are written concretely in this figure. The solutions by the
secant modulus method (Gerard. 1948) and the deformation theory (Stowell, 1949) are
very low and are beyond the boundary of Fig. 9.

3.3.2. Buckling strain. The buckling strain is generally expressed in Fig. 10. The
ordinate is buckling strain ;,, and the abscissa is width-to-thickness ratio A/¢. The symbols
A, B, C and D correspond to those on the buckling stress curve in Fig. 7. The point C in
Fig. 7 lies on both yield plateau and strain hardening curve. Thus the plate at this point is
just situated at a limit at which the buckling strain translates from 7, and . Therefore one
point C on the buckling stress curve corresponds to two points Cs on the buckling strain
curve. The plates with width-to-thickness ratio smaller than that at the point D reach v,
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Fig. 9. Buckling curve for x = «.
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Fig. 10. Buckling strain.
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Fig. 11. Buckling strain for x = x.

and thereafter the strain progresses along the material property without experience of
buckling. The buckling strain curve is drawn in Fig. 11 for » = o« specifically. This curve
corresponds to the buckling stress curve in Fig. 9.

3.3.3. Mode of buckling warve. The mode of buckling wave analytically obtained is
shown in Fig. 12-1-3. As the representative of plates with finite length, « = 1 and 2 are
selected. The former shows a symmetrical mode and the latter shows an antisymmetrical
mode. Each mode is expressed by contour lines setting the maximum deformation w,,,,
equal to 1.

4. TEST AND ANALYTICAL RESULTS

A shear test of H-shaped steel cantilever was conducted by the author (Inoue and
Akiyama, 1985).

4.1. Test program

The specimens are welded H-shaped cantilever as shown in Fig. 13. After completion
of welding the specimens were not annealed.

The material of the cantilever is mild steel designated by SS400 in JIS. The measured
thickness of the web plate elements was 4.44 mm. The measured dimensions of the specimens
are shown in Table 4. The total number of the specimens is 5. The aspect ratio « of the
specimens is 2. The flange thickness is varied for each specimen so as to avoid the premature
yielding of the flange plate before the shear yielding of the web plate.

The definition of symbols in Table 4 is as follows:

d: width of the web

2¢: width of the flange

t,.: thickness of the web

t,+ thickness of the flange

{: length of the specimen

djt, : width-to-thickness ratio of the web

c¢/t;: width-to-thickness ratio of the half flange

The mechanical property of the web plate from tension test is shown in Fig. 14 and
Table 5. The definition of symbols in the figure and table is quite the same as defined in
Table 1 except that symbol “¢”", which means that they are experimentally obtained, is
attached in addition to the original symbols. The length of the yield plateau of this material
is shortish as compared with ordinary mild steel.

4.2. Test procedure
Shear load @ was monotonically and horizontally applied to the top of the specimen
using 200-ton actuator, and the base of the specimen was fixed to the floor as Fig. 13. The
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Fig. 12-1. Buckling mode for x = I.

Fig. 12-3. Buckling mode for x = = .

horizontal displacement & of the top of the specimen was measured, and the shear defor-
mation angle 8 was calculated by 6 = 3,/ as Fig. 13.

4.3, Test results

4.3.1. Load-deformation relation. /.0, — 8,0y relations were obtained as test results.
These are relations between the following two nondimensionalized volumes. One is working
shear load Q divided by the yield shear load .0y, and the other is shear deformation angle
¢ divided by .Qy..Qy is the load just at the point of intersection of the following two
straight lines. One is the elastic inclination line, which includes both shear and bending
components of deformation, and the other is the straight line, which represents the increas-
ing part of strain hardening range on the load-deformation curve. .0, is calculated diving
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Fig. 13. Specimens.
Table 4. Dimensions of specimens
Code d 2¢ 1, !, d't, ity ! lid
(mm) (mm) (mm) (mm) (mm)
2D-30 135 171 4.44 8.56 304 10.0 270 20

40 180 168 4.44 11.74 40.5 7.2 360 2.0
50 225 204 4.44 11.74 50.7 8.7 450 20
60 270 176 4.44 15.36 60.8 5.7 540 2.0
70 315 208 4.44 15.36 71.0 6.8 630 20

K E(°'.°)
0 1 2 3 4

Fig. 14. Stress—strain curve of web plate from tension test.

L L

Table S. Material property of the web plate from tension test

Oy Oy Ly e E L
(N‘mm°) (N mm-) (%) (%) (N/mm?) (N/mm?)

295 469 0.143 0.49 205940 4315

Oy by the elastic stiffness of the member. Nondimensionalized load-deformation curves

are shown in Fig. 15.

4.3.2. Stress increase and analytical value. Nondimensionalized stress increase rate p,
or the experimentally obtained maximum load Q,, divided by .Q,. are shown in Table 6.
These are graphically shown in Fig. 16. In Fig. 16, the ordinate is the stress increase rate p,
and the abscissa is equivalent to the width-to-thickness ratio d/t,,.\/”(,y v - 7y 18 the yield shear

strain, and is a half of ., divided by elastic shear modulus G.

We compare these ps with the analytical values obtained in Section 3. For comparison,
eqn (37) in Section 3 is used taking 3.96 for K. which is the lowest value for long plate.
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Fig. 15. Test results.

Table 6. Test results

Code 1 d Lo o3y

2D-30 1.52 1.31
40 1.40 1.75
50 1.29 2.19
60 1.10 262

70 1.05 3.06

15f L e

1.0 =
/Gerard’s
(long plate)
elostic

® Test results

dALE

0 1 2 3 4

Fig. 16. Stress increase rate and analytical value.

n° 1

Ty  6(1—v) & (bxt\/;)2 ©0)

Supposing the left-hand side of the above equation is equal to p, and putting b/¢ and
vy equal to dir and .y, respectively, this equation is drawn by a solid line in Fig. 16.

For comparison, the solutions by Gerard (1948), which used secant modulus method,
are also drawn in Fig. 16 by a dashed line. This curve is derived for the long plates simply
supported along all four edges. These solutions are expressed by the following simple
equation.

G, n°KE r\
T,= ' ———|< 51
G 12<1v-><b> el

where
G.: secant modulus in shear
K.: 5.34 when the plate 1s sufficiently long.
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There is only a slight different between the solutions by Grerard (1948) and the
solutions of deformation theory by Stowell (1949) and Bijlaard (1949). Therefore a dashed
line in Fig. 16 is considered to be representative of past analytical investigations.

This figure demonstrates that the analysis and experiment have good agreement with
respect to the upper limit of the width-to-thickness ratio range in which shear stress can be
increased over the yield shear stress into the strain hardening range.

With the decrease in the effective width-to-thickness ratio in the strain hardening range,
the stress increase rate becomes larger, but the experimental data points are below the
analytical predictions. The reason for this discrepancy is not apparent, but may be due to
the loss of geometric similarity of the yield locus in the strain hardening range, which is the
basic assumption in this analysis. When the geometric similarity is impaired, slip defor-
mations in different directions can be combined.

It can be concluded that the proposed analytical method provides a good agreement
with the experimental results especially in the early plastic zone.

5. CORRESPONDENCE TO PAST DESIGN FORMULAS

Kato (1979) gave the following empirical formula for the limit value of width-to-
thickness ratio which enabled the buckling stress to reach the yield shear stress by the
analogy of column buckling.

b 114
- < — (52)
1 oy

This formula could be obtained from elastic buckling stress curve of infinitely long
simply supported plate. Its method was to draw a tangent line at 0.61, on the elastic
buckling stress curve and to determine a point at which the line reached 1,.

Equation (52) was later simplified on the safety side, as the following formula and was
adopted in a specification (1983) by Architectural Institute of Japan.

b 110
P L = (53)

vV Oy

The limit values of width-to-thickness ratio by eqn (52) and (53) are 73.6 and 71.0
respectively for the mild steel, JIS-SS400. the limit value of width-to-thickness ratio (b/t).,
which enable the plate to reach the onset of strain hardening, by the author’s analysis is
79.1 as Fig. 9 for the same condition as Kato’s formulas were derived. This limit value by
the author is a little larger than that by Kato’s formula (52).

6. SUMMARY AND CONCLUSIONS

(1) On the basis of the Tresca yield criterion and assuming that the plastic deformation is
generated by planar slip in the direction of the maximum shear stress, the bending and
torsional stiffnesses of the yielded steel plates in shear were derived.

(2) All the bending stiffnesses take the elastic values in both plastic flow and strain
hardening ranges.

(3) The torsional stiffness is zero in the plastic flow range. In the strain hardening range,
it is equal to G 1. G, is shown in Table 1 for mild steel, JIS-SS400.

(4) The contribution of G, to the buckling stress is very small, e.g. at most 1.4% fora = 1.

(5) Mild steel, JIS-400. is selected as a standard structural material for an example of
buckling analysis. Standard buckling curves both for stress and strain were derived.

(6) A shear test of H-shaped steel cantilever was conducted for comparison with the
analysis from the view point of stress increase.

(7) The analytically obtained width-to-thickness ratio to reach the onset of strain hardening
coincides with the test result.
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(8) With the decrease in the effective width-to-thickness ratio in the strain hardening range,
the stress increase rate obtained experimentally is below the analytical predictions.
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APPENDIX: DIFFERENCE BETWEEN THE AUTHOR’S ANALYSIS AND THAT OF
INCREMENTAL THEORY

The solution of plastic shear buckling stress by the incremental theory is exactly the same as author’s analysis
except that yield shear stress differs from the author’s one. In the incremental theory associated with the von
Mises yield criterion, the yield shear stress is o, \"'3 and therefore is higher about 16% than that used in this
paper. Thus the buckling curve in Fig. 9 is efficient also for the incremental theory if the yield plateau only is
enhanced. The reason why the drastic reduction of plastic buckling stress. or uniaxial compression, can’t be
brought about in shear analytically compared with the incremental theory is that the yield point. on the biaxially
expressed the Tresca yield locus by principal stresses. has no corner. Furthermore, there is a specific character for
the bending and torsional stiffnesses that these values are decided by the inclination of the tangent on the yield
locus. There is no difference between two inclinations of the tangent at the yvield points on the two yield locuses,
one of which is based on the Tresca yield criterion and the other of which is based on the von Mises yield criterion.
In order to prove the above feature, it is quite sufficient to show the agreement of the values of bending and
torsional stiffnesses brought about by the incremental theory with the author’s one.

(Incremental theory)

(a) Plastic flow range

The incremental stress—strain theory in the plastic flow range was given by Reuss (1930) on the basis of von
Mises yield criterion as follows:

o de
di, = ;5 +0, d. (Al)

where d/ = a constant of proportionality.

Tensor notations used are : subscript Jj for stress and stram means that, g, = 06,, 01 = 0. 03, = 0., 0, = T,
O =T,..0y =T, and g, = 6,6 = £, 833 = €. 82 = :,,, £ = 3 b1 = L, oo respecuvely o, and ¢;, are deviatoric
stress dnd devnatorlc strain respectlvely [for example. 6, = g, 7—(5 +o,+0.)].

When a plate is subjected to uniformly distributed in- plane pure shear stress under the plane-stress condition,
it can be assumed that stresses all vanish except 7,,. At the instant of buckling, bending and torsion of the plates
will occur without strain reversal according to Shanley’s tangent modulus concept. and the condition of no strain
reversal is written as dJ, = 0, where J. = t¥, = second invariant of deviatoric stress tensor for this particular case.

Namely

dr,, =0 (A2)

Under this stress condition. the stress—strain relationship by eqn (A1) is written in unabridged form
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dc, = %(do" —vde,)

de, = 1— d -d (A3)
8 —E( o, —vdo,

d"'

Foo= 21, d2

Equation (A3) perfectly agree with eqn (8) which is the base of the author’s analysis if 2z,,dA is replaced
with dx. Therefore the bending and torsional stiffnesses perfectly agree with the author’s one.

(b) Strain hardening range

The incremental stress—strain relationship was given by the following equation.

do, of
oo Y = Ad
6, =g +F 7 0 (A4)

where

o1
'413(5,_15

F = loading function with f = J, = 1}, is applied. The condition of no strain reversal is written as dJ, > 0,
or dz,, = 0. Under this stress condition, the stress—strain relation eqn (A4) is written in unabridged form

de, = — (do, —vdo,)

ol —

(do,—vda,) (AS)

1 1o !
(TN R ¥ I
dy, {G ‘ (E’ Eﬂdr., J

Equation (AS5) agrees perfectly with eqn (9) which is obtained by the author. Therefore the bending and
torsional stiffnesses perfectly agree with the author’s.



